<Citation>   <Acknowledgement>   <Disclaimer>   Daly, C.; McKee, W. 2019. Air and soil temperature data from the Reference Stand network at the Andrews Experimental Forest, 1971 to present. Long-Term Ecological Research. Forest Science Data Bank, Corvallis, OR. [Database]. Available: http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=MS005. https://doi.org/10.6073/pasta/d0abe716146004268bb5f876ee42c992. Accessed 2024-10-03. Data were provided by the HJ Andrews Experimental Forest research program, funded by the National Science Foundation's Long-Term Ecological Research Program (DEB 2025755), US Forest Service Pacific Northwest Research Station, and Oregon State University. While substantial efforts are made to ensure the accuracy of data and documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is". The Andrews LTER shall not be liable for damages resulting from any use or misinterpretation of data sets.
The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature.
An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients.