Effects of topography on soil characteristics in the Andrews Experimental Forest, 1998

  • Creator(s): Robert P. Griffiths
  • PI(s): Robert P. Griffiths
  • Originator(s): Robert P. Griffiths
  • Other researcher(s):
  • Dates of data collection: Jun 15 1998 - Jul 7 1998
  • Data collection status: Study collection is completed and no new collection is planned
  • Data access: Online
  • DOI:
  • Access constraint: If data used in publication, the PI will be listed as a coauthor. Whenever these data are presented in whatever form, the PI will be acknowledged.
  • Last update: Aug 7 2019 (Version 8)
<Citation>     <Acknowledgement>     <Disclaimer>    
Griffiths, R. 2019. Effects of topography on soil characteristics in the Andrews Experimental Forest, 1998. Long-Term Ecological Research. Forest Science Data Bank, Corvallis, OR. [Database]. Available: Accessed 2023-12-11.
Data were provided by the HJ Andrews Experimental Forest research program, funded by the National Science Foundation's Long-Term Ecological Research Program (DEB 2025755), US Forest Service Pacific Northwest Research Station, and Oregon State University.
While substantial efforts are made to ensure the accuracy of data and documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is". The Andrews LTER shall not be liable for damages resulting from any use or misinterpretation of data sets.

This is the third and final data set in a series of basin-scale summer forest soil surveys. We conducted soil survey in 1998 designed to provide an accurate assessment of soil properties over the entire H.J. Andrews Experimental Forest. This dataset represents the results of that effort. Since the 1994 survey, we changed the way we measured soil field respiration rates. Initially we used the 24 hr soda-lime CO2 adsorption method in chambers with only one measurement per site. In 1998 we converted to using the Li-Cor portable respirometer with 5 measurements made per site. Since 1994, it was also discovered that there were significant edge effects to 30 meters from an edge. For this reason, all sample locations were moved at least 40 meters from the road. While conducting autocorrelation analyses, we found that for the variables studied, samples collected at 5 m intervals were not autocorrelated and could thus be considered independent for statistical analysis. Our subsequent work also allowed us to chose those variables that would most likely be influenced by topography.

The previous two surveys were conducted in the late summer when the forests are dry and microbial activity at a minimum. The current study was conduced from mid June to the first of July while the soils were still moist and when microbial activity was more typical of wet months. In the other two studies, only one measurement was made per site. In the current survey, replicate samples were collected and pooled or multiple measurements were made in the field. As a result of experimental design modifications, it is thought that this represents the best and most definitive dataset of basin-scale soil properties on the HJA.

In the first survey, forest floor respiration rates were measured at 130 sites covering a large portion of the HJA. The sample sites were located at 0.5 km intervals along most of the main roads. In addition to field respiration rates measured by the soda-lime method, soil and air temperatures were recorded along with maximum and minimum soil temperatures for the 24 hr CO2 collection period. Only one measurement was made per site. These data and associated metadata can be found in database SP005 under the title of “H.J. Andrews 1993 REU synoptic soil respiration of permanent forest sites”.

The following summer, a much more comprehensive study was conducted. The number of sites studied was expended to 183 sites located at 0.5 km intervals along all passable roads on the HJA. With the exception of the max-min soil temperature data, all variables measured in 1993 were repeated in 1994. In addition, the following variables were measured: pH, soil moisture, bulk density, soil organic matter, laboratory respiration (both long and short-term; with and without amendments), denitrification potential, extractable ammonium, and mineralizable nitrogen. In addition, we scored for the presence of moss on the surface and mycorrhizal mats found in 4.7 x 10 cm cores. These data and associated metadata are located in database SP006 entitled “H.J. Andrews 1994 REU study of soil chemical and microbiological properties”. The main objective of this study was to provide a broad overview of soil chemical and biological properties to guide us in future large-scale HJA soil surveys.

Study Description Study Site Map Download Study Location Information: (CSV)
Ecological Metadata Language: (EML)
1The effects of topography on H.J. Andrews Experimental Forest soil characteristics (Jun 15 1998 - Jul 7 1998)METADATADATA
2Soil synoptic grid site characteristics, locations and descriptions (Jun 15 1998 - Jul 7 1998)METADATADATA
Corrections made in summer 2001

 Respiration in soils collected from the REU synoptic sample grid in the Andrews Experimental Forest, 1994-1995 (SP010)
 Synoptic soil respiration of permanent forest sites in the Andrews Experimental Forest (1993 REU Study) (SP005)
 Chemical and microbiological properties of soils in the Andrews Experimental Forest (1994 REU Study) (SP006)

 Griffiths, R. P., Madritch, M. D., Swanson, A. K. 2009, The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties (Pub. No: 4480)