The factors that contribute to plant species establishment and decline following disturbance determine the rates and patterns of successional change of a system. In this long-term field experiment, we test the commonly held assumption that competition for space or resources by dominant species determines the outcome of succession. Specifically, we examine the population- and community-level consequences of removing one or more potentially dominant species from the post-disturbance community after clearcut logging and burning of a mature/old-growth Douglas-fir forest. Experimental treatments include: (1) removal of early-seral annual, Senecio sylvaticus, or perennial, Epilobium angustifolium—or both—to test the influences of these early-seral dominants on subsequent community development; (2) removal of all species except Senecio or Epilobium, to test whether the decline of these early-seral dominants is driven by competitive displacement; or (3) removal of shade-tolerant forest species that dominate subsequent stages of succession—Rubus ursinus or Berberis nervosa plus Gaultheria shallon—to test the influences of these long-lived perennials on understory development. The experiment is a randomized block design comprising eight removal treatments plus a control replicated in each of 25 blocks. Removal (reduction in competition) is achieved by removing seedlings or vegetative stems annually from a treatment area of 2.5 x 2.5 m. Sample plots (1 x 1 m) centered within these are used to estimate cover of all vascular plant species and, for the first 8 yr of the experiment, stem density and height, facilitating estimates of above-ground biomass. Pre-harvest data were collected in 1990, logging/burning occurred in 1991, and removal treatments and post-treatment sampling were initiated in 1992. Six of the nine experimental treatments were terminated between 1996 and 1998, with loss of early-seral Senecio and Epilobium from the system. The remaining three treatments (removal of Rubus, removal of Berberis plus Gaultheria, and the control) have been sampled annually since 1992. All regeneration of trees within the experimental area has occurred naturally. In September 2018, the study site partially burned during the larger Terwilliger Fire on the Willamette National Forest. In 2019, plots were assessed for burn severity. Species' removals were terminated, but cover measurements continue in the plots.

Keywords: Clearcut logging; Clearcutting; Community dynamics; Competition; Disturbance; Long-Term Ecological Research (LTER); Primary production; Slash burning; Slash/broadcast burning; Species interactions; Succession; Trophic structure; Primary production; Long-Term Ecological Research (LTER); Community dynamics; Trophic structure; Succession; Primary production; Species interactions; Competition; Disturbance; Burning; Timber harvest; Clearcutting;

Date data commenced: 1990-07-01
Date data terminated: 2019-07-04

Principal Investigator: Charles B. Halpern

List of Entities:
1. Species Cover, Density, and Biomass Measurement Data
2. Species Removals (counts)
3. Species Cover, Density, and Biomass Measurements Original Fieldsheet Format
4. Species Cover, Density, and Biomass Measurements Modified Fieldsheet Format
5. Equations used for calculating biomass
6. Estimated biomass using measurement data and equations
7. Assessment of 2018 burn severity

<table>
<thead>
<tr>
<th>Attribute List:</th>
<th>DBCODE</th>
<th>ENTITY</th>
<th>STUDY</th>
<th>YEAR</th>
<th>SDATE</th>
<th>SEASON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>numeric(1,0)</td>
<td>numeric(11)</td>
<td>numeric(4,0)</td>
<td>datetime</td>
<td>numeric(1)</td>
</tr>
<tr>
<td></td>
<td>enum</td>
<td>range</td>
<td>place</td>
<td>range</td>
<td>range</td>
<td>enum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attributes</th>
<th>DBCODE</th>
<th>ENTITY</th>
<th>STUDY</th>
<th>YEAR</th>
<th>SDATE</th>
<th>SEASON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>char(5)</td>
<td>numeric(1,0)</td>
<td>char(11)</td>
<td>numeric(4,0)</td>
<td>datetime</td>
<td>char(1)</td>
</tr>
<tr>
<td></td>
<td>enum</td>
<td>range</td>
<td>place</td>
<td>range</td>
<td>range</td>
<td>enum</td>
</tr>
</tbody>
</table>
2. Species Removals (counts)

Attribute List:
- **DBCODE**: char(5) enum
- **ENTITY**: numeric(1,0) range 2.0000 2.0000 number
- **STUDY**: char(11) place
- **SDATE**: datetime range `6/21/1992` 12:00:00 AM `8/14/1994` 12:00:00 AM YYYY-MM-DD
- **RDATE**: datetime range `6/22/1992` 12:00:00 AM `5/17/1998` 12:00:00 AM YYYY-MM-DD
- **SEASON**: char(1) enum 1.0000 3.0000
- **BLOCK**: numeric(2,0) range 1.0000 25.0000 number
- **PLOT**: numeric(1,0) range 1.0000 9.0000 number
- **TMT**: char(1) enum
- **SPECIES**: char(6) taxa
- **NREMBUF**: numeric(6,0) range 0.0000 1354.0000 number
- **NREMPLT**: numeric(6,0) range 0.0000 486.0000 number
- **NOTES**: varchar(45) freetext

3. Species Cover, Density, and Biomass Measurements Original Fieldsheet Format

Attribute List:
- **DBCODE**: char(5) enum
- **ENTITY**: numeric(1,0) range 3.0000 3.0000 number
- **STUDY**: char(11) place
Species Cover, Density, and Biomass Measurements Modified Fieldsheet Format

Attribute List:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Y/N</th>
<th>Data Type</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N</td>
<td>char(5)</td>
<td></td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N</td>
<td>numeric(1,0)</td>
<td>range</td>
<td>4.0000</td>
</tr>
<tr>
<td>STUDY</td>
<td>N</td>
<td>char(11)</td>
<td></td>
<td>place</td>
</tr>
<tr>
<td>YEAR</td>
<td>Y</td>
<td>numeric(4,0)</td>
<td>range</td>
<td>1997.0000</td>
</tr>
<tr>
<td>SDATE</td>
<td>N</td>
<td>datetime</td>
<td></td>
<td>YYYY-MM-DD</td>
</tr>
<tr>
<td>SEASON</td>
<td>Y</td>
<td>char(1)</td>
<td></td>
<td>enum</td>
</tr>
<tr>
<td>BLOCK</td>
<td>Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>1.0000</td>
</tr>
<tr>
<td>PLOT</td>
<td>Y</td>
<td>numeric(1,0)</td>
<td>range</td>
<td>1.0000</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Y</td>
<td>char(6)</td>
<td></td>
<td>taxa</td>
</tr>
<tr>
<td>STRATUM</td>
<td>Y</td>
<td>char(1)</td>
<td></td>
<td>enum</td>
</tr>
<tr>
<td>LC</td>
<td>Y</td>
<td>numeric(3,0)</td>
<td>range</td>
<td>1.0000</td>
</tr>
<tr>
<td>COV1_4TH</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>COVER</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>DENSITYYS</td>
<td>N</td>
<td>numeric(6,0)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>DENSITYYM</td>
<td>N</td>
<td>numeric(6,0)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM1BV1</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM1BV2</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM2BV1</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM2BV2</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM3BV1</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM3BV2</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM4BV1</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM4BV2</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM5BV1</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>STEM5BV2</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range</td>
<td>0.0000</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMT</td>
<td>Y N</td>
<td>char(1) enum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>Y N</td>
<td>char(6) taxa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>Y N</td>
<td>numeric(3,0) range 1.0000 10.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COV1_4TH</td>
<td>N Y</td>
<td>numeric(5,1) range 0.0000 100.0000 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVER</td>
<td>N Y</td>
<td>numeric(5,1) range 0.0000 100.0000 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITYS</td>
<td>N Y</td>
<td>numeric(6,0) range 0.0000 2000.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITYM</td>
<td>N Y</td>
<td>numeric(6,0) range 0.0000 70.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM1BV1</td>
<td>N Y</td>
<td>numeric(5,1) range 0.1000 150.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM1BV2</td>
<td>N Y</td>
<td>numeric(5,1) range 0.1000 150.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM1NO</td>
<td>N Y</td>
<td>numeric(5,0) range 1.0000 1000.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM2BV1</td>
<td>N Y</td>
<td>numeric(5,1) range 0.1000 150.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM2BV2</td>
<td>N Y</td>
<td>numeric(5,1) range 0.1000 150.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM2NO</td>
<td>N Y</td>
<td>numeric(5,0) range 1.0000 1000.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM3BV1</td>
<td>N Y</td>
<td>numeric(5,1) range 0.1000 150.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM3BV2</td>
<td>N Y</td>
<td>numeric(5,1) range 0.1000 150.0000 number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEM3NO</td>
<td>N Y</td>
<td>numeric(5,0) range 1.0000 1000.0000 number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Equations used for calculating biomass

Attribute List:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5) enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(1,0) range 5.0000 5.0000 number</td>
</tr>
<tr>
<td>STUDY</td>
<td>N Y</td>
<td>char(11) place</td>
</tr>
<tr>
<td>YEAR</td>
<td>Y N</td>
<td>numeric(4,0) range 1992.0000 2019.0000 number</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Y N</td>
<td>char(6) taxa</td>
</tr>
<tr>
<td>EQUATION</td>
<td>N N</td>
<td>varchar(55) freetext</td>
</tr>
<tr>
<td>ALTEQU</td>
<td>Y N</td>
<td>char(1) enum</td>
</tr>
</tbody>
</table>

6. Estimated biomass using measurement data and equations

Attribute List:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5) enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(1,0) range 6.0000 6.0000 number</td>
</tr>
<tr>
<td>STUDY</td>
<td>N Y</td>
<td>char(11) place</td>
</tr>
<tr>
<td>YEAR</td>
<td>Y N</td>
<td>numeric(4,0) range 1992.0000 2019.0000 number</td>
</tr>
<tr>
<td>SEASON</td>
<td>Y N</td>
<td>char(1) enum</td>
</tr>
<tr>
<td>BLOCK</td>
<td>Y N</td>
<td>numeric(2,0) range 1.0000 25.0000 number</td>
</tr>
<tr>
<td>PLOT</td>
<td>Y N</td>
<td>numeric(1,0) range 1.0000 9.0000 number</td>
</tr>
</tbody>
</table>
Attributes Definitions:

ALTEQU

Alternative equation within a species for calculating biomass

B_VAL

Unique biomass value for a given year, season, block, plot, tmt, species.

BIOMASS

Estimated biomass

BLOCK

Sample block (1-25)

BURN_CLASS

Burn class

BURN_COMMENT

Description of burn conditions

COV1_4TH

Cover in the 1/4 plot

COVER

Cover in the 1 m2 plot

DBA

Basal diameter

DBCODE

Database code

DENSITYM

Density of mature stems/sprouts (1 m2 plot)

DENSITYS

Density of seedlings (1 m2 plot)

ENTITY

Entity number

EQUATION

Explicit equation used for calculating biomass. mht = height, mcov= cover, mdba = bottom diameter

HT

Total height (including inflorescence if present)

HTV

Height of vegetative portion

LC

Line count

NOTES

Comments

NREMBUF

Number of stems removed from 75 cm buffer

NREMPLT

Number of stems removed from 1 m2 plot

PCT_BURN

Percentage of ground surface burned or charred within the plot

PCT_BURN_ADJ

Percentage of ground surface burned or charred within 0.5 m of the plot edge

PLOT

Sample plot w/in block (1-9)

PROP_DEAD

Proportion of trees within 2.5 m of the plot that are dead (undefined if there are no trees)

RDATE

Date of species removal (yyyyymmdd)
REC_NO
 Unique record number for a given year, season, block, plot, tmt, species and stratum

SDATE
 Vegetation sampling date

SEASON
 Sampling season (1 - 3)

SPECIES
 Species acronym according to Garrison et al. 1974

STEM1BV1
 Biomass parameter 1 of stem1

STEM1BV2
 Biomass parameter 2 of stem1

STEM1NO
 Number of stems containing the corresponding bv1 and bv2 values

STEM2BV1
 Biomass parameter 1 of stem2

STEM2BV2
 Biomass parameter 2 of stem2

STEM3BV1
 Biomass parameter 1 of stem3

STEM3BV2
 Biomass parameter 2 of stem3

STEM4BV1
 Biomass parameter 1 of stem4

STEM4BV2
 Biomass parameter 2 of stem4

STEM5BV1
 Biomass parameter 1 of stem5

STEM5BV2
 Biomass parameter 2 of stem5

STRATUM
 Pre-harvest tree stratum: (O)verstory, (S)ubcanopy, (U)nderstory

STUDY
 Study site location

TMT
 Treatment code (A-I)

TREES_DEAD
Number of dead trees within 2.5 m of the plot

TREES_LIVE

Number of live trees within 2.5 m of the plot

YEAR

Sampling year

Enumerated Domains:

Enumerated Domain for Attribute: SEASON
Unknown season of sampling

1 First season of sampling per year (usually june)
2 Second season of sampling per year (usually july)
3 Third season of sampling per year (usually august)

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103

Enumerated Domain for Attribute: STRATUM
O Overstory
S Subcanopy
U Understory
N post-harvest (1990) or not a tree in 1990 (only recorded for trees pre-harvest)

Enumerated Domain for Attribute: TMT
A Control
B Senecio sylvaticus removed
C Epilobium angustifolium removed
D Senecio sylvaticus and Epilobium angustifolium removed
E Senecio sylvaticus and community removed
F Epilobium angustifolium and community removed
G Community removed
H Rubus ursinus removed
I Berberis nervosa and Gaultheria shallon removed

Enumerated Domain for Attribute: SEASON
Unknown season of sampling

1 First season of sampling per year (usually june)
2 Second season of sampling per year (usually july)
3 Third season of sampling per year (usually august)

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103
Enumerated Domain for Attribute: TMT
A Control
B Senecio sylvaticus removed
C Epilobium angustifolium removed
D Senecio sylvaticus and Epilobium angustifolium removed
E Senecio sylvaticus and community removed
F Epilobium angustifolium and community removed
G Community removed
H Rubus ursinus removed
I Berberis nervosa and Gaultheria shallon removed

Enumerated Domain for Attribute: SEASON
Unknown season of sampling
1 First season of sampling per year (usually june)
2 Second season of sampling per year (usually july)
3 Third season of sampling per year (usually august)

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103

Enumerated Domain for Attribute: STRATUM
O Overstory
S Subcanopy
U Understory
N post-harvest (1990) or not a tree in 1990 (only recorded for trees pre-harvest)

Enumerated Domain for Attribute: TMT
A Control
B Senecio sylvaticus removed
C Epilobium angustifolium removed
D Senecio sylvaticus and Epilobium angustifolium removed
E Senecio sylvaticus and community removed
F Epilobium angustifolium and community removed
G Community removed
H Rubus ursinus removed
I Berberis nervosa and Gaultheria shallon removed

Enumerated Domain for Attribute: SEASON
Unknown season of sampling
1 First season of sampling per year (usually june)
2 Second season of sampling per year (usually July)
3 Third season of sampling per year (usually August)

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103

Enumerated Domain for Attribute: TMT
A Control
B Senecio sylvaticus removed
C Epilobium angustifolium removed
D Senecio sylvaticus and Epilobium angustifolium removed
E Senecio sylvaticus and community removed
F Epilobium angustifolium and community removed
G Community removed
H Rubus ursinus removed
I Berberis nervosa and Gaultheria shallon removed

Enumerated Domain for Attribute: ALTEQU
1 primary equation
2 second alternative equation
3 third alternative equation
4 fourth alternative equation

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103

Enumerated Domain for Attribute: SEASON
Unknown season of sampling
1 First season of sampling per year (usually June)
2 Second season of sampling per year (usually July)
3 Third season of sampling per year (usually August)

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103

Enumerated Domain for Attribute: TMT
A Control
B Senecio sylvaticus removed
C Epilobium angustifolium removed
D Senecio sylvaticus and Epilobium angustifolium removed
E Senecio sylvaticus and community removed
F Epilobium angustifolium and community removed
G Community removed
H Rubus ursinus removed
I Berberis nervosa and Gaultheria shallon removed

Enumerated Domain for Attribute: DBCODE
TP103 FSDB database code TP103

Enumerated Domain for Attribute: TMT
A Control
B Senecio sylvaticus removed
C Epilobium angustifolium removed
D Senecio sylvaticus and Epilobium angustifolium removed
E Senecio sylvaticus and community removed
F Epilobium angustifolium and community removed
G Community removed
H Rubus ursinus removed
I Berberis nervosa and Gaultheria shallon removed

Enumerated Domain for Attribute: BURN_CLASS
B Burned
PB Partially burned
UB Unburned