Title: Long-term log decay experiments at the Andrews Experimental Forest, 1985 to 2185

Abstract:

These data are collected from six sites within the H. J. Experimental Forest and are part of a 200-year experiment on the decomposition of logs in a terrestrial environment. The taxa being examined in the experiment are Douglas-fir, western hemlock, western redcedar, and Pacific silver fir. The data start in 1985 and are periodically updated as samples are taken. The last collection of data is planned in 2185. Periodically logs are sampled by measuring their diameters and lengths as well as bark cover and the fraction of their length in contact with the ground. Cross-sections are removed with a chainsaw and dissected with a table saw or other means to determine the density of bark and wood samples. These samples systematically sample each cross-section and can be used to reconstruct the spatial pattern of decomposition. Subsamples are ground and nutrient concentrations are determined to calculate nutrient stores. Twenty one data tables are associated with this study. A general description of the logs (length, diameters, bark cover) is found in td01401 and can be used to estimate how the log has fragmented over time. The areal extent of tissue types (outer bark, inner bark, sapwood, and heartwood) and zones of rotten wood from cross-sections is documented in td01418 and td01419. The position of the pith in each cross-section, a useful indicator of volume loss, is documented in td01420. The density (dry mass/green volume) of samples is documented in td01403 and based on the weights of individual samples (td01404) as well as their dimensions (td01405). The arrangement of samples into transects (top to bottom, left to right) within the cross-sections is documented in td01406. To help explain why some samples may be more dense than others, the area of the sample cross-section covered by knots is documented in td01407 (knots are more decay resistant and of greater density than wood). The radial thickness of inner and outer bark of the undecayed logs is documented in td01409, and can be used to estimate the original thickness of these tissues once extensive decomposition occurs. Given that the outer bark can be quite irregular in shape, water displacement was used to determine the volume of this tissue; these data are documented in td01415. The location of the logs at the six sites is stored in td01413, with distances, slope, and bearing from a series of surveyed posts noted. The cell wall chemistry of samples has been analyzed using the proximate method described by Ryan et al. (td01408) and Van Soest (td01412). The number and type of insect galleries present on logs for the first three years is documented in td01410. The number and species of fungal sporocarps growing on logs in the autumn for the first eight years is documented in td01414. Concentrations of nutrient elements such as nitrogen, phosphorus, calcium, and potassium of dried, ground samples of inner and outer bark, sapwood, and heartwood, as well as fungal sporocarps and insects is stored in td01411. Parameters for regression models derived from these data that describe the temporal pattern of decomposition is stored in td01421.

Keywords: Coarse woody debris; Decay; Decomposition; Invertebrates; Logs; Nurse-logs; Nutrient cycling; Nutrients; Woody debris; Inorganic nutrients; Organic matter; decay rates; decomposition; nutrient cycling; inorganic nutrients; nutrients; woody debris; coarse woody debris; organic matter; invertebrates; logs;

Date data commenced: 1985-03-26
Date data terminated: 2016-08-24

Principal Investigator: Mark E. Harmon

List of Entities:
1. Whole Log Descriptions
2. Preliminary cross-sectional area of tissue types
3. Sample volume, moisture, and density
4. Sample Wet and Dry Weights
5. Wood and Bark Sample Outer Dimensions
6. Block and Sample Arrangement in Cross-sections
7. Knot Volume Correction Estimate for Wood Samples
8. Ryan et al Cell Wall Chemistry of Bark and Wood Samples
9. Radial Bark Thickness
10. Insect Galleries
11. Nutrient Content of Bark, Wood, Fungal, and Insect Samples
12. Van Soest Cell Wall Chemistry of Wood and Bark Samples
13. Log Location Survey Notes
14. Sporocarp Counts from Logs
15. Bark Sample Volumes from Water Displacement
16. Entire cross-section method: data for tissue dimensions, total mass, total volume, and density
17. Entire cross-section method: data for subsample dimensions, mass, and density
18. Areas of sound and rotten tissues based on digitized photographic slides of cross-sections
19. Computed diameter and areas of sound and rotten tissues based on digitized photographic slides of cross-sections
20. Polar coordinate (distance and angle) location of pith relative to the outer surface of cross-sections
21. Decomposition equation summary data

<table>
<thead>
<tr>
<th>Whole Log Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A general description of the logs (length, diameters, bark cover); used to estimate how the log has fragmented over time</td>
</tr>
</tbody>
</table>

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N</td>
<td>N</td>
<td>char(5) enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N</td>
<td>N</td>
<td>numeric(2,0) range</td>
</tr>
<tr>
<td>SITECODE</td>
<td>Y</td>
<td>N</td>
<td>char(10) place</td>
</tr>
<tr>
<td>SITE</td>
<td>N</td>
<td>N</td>
<td>char(1) enum</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0) range</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N</td>
<td>N</td>
<td>char(4) taxa</td>
</tr>
<tr>
<td>TREATMNT</td>
<td>N</td>
<td>N</td>
<td>char(1) enum</td>
</tr>
<tr>
<td>TIME</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0) range</td>
</tr>
<tr>
<td>YEAR</td>
<td>N</td>
<td>N</td>
<td>numeric(4,0) range</td>
</tr>
<tr>
<td>DIAM_END1</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1) range</td>
</tr>
<tr>
<td>DIAM1</td>
<td>N</td>
<td>Y</td>
<td>numeric(4,1) range</td>
</tr>
<tr>
<td>DIST1</td>
<td>N</td>
<td>Y</td>
<td>numeric(3,1) range</td>
</tr>
<tr>
<td>DIAM2</td>
<td>N</td>
<td>Y</td>
<td>numeric(4,1) range</td>
</tr>
<tr>
<td>DIST2</td>
<td>N</td>
<td>Y</td>
<td>numeric(3,1) range</td>
</tr>
<tr>
<td>DIAM_MID</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1) range</td>
</tr>
<tr>
<td>DIST_MID</td>
<td>N</td>
<td>Y</td>
<td>numeric(3,1) range</td>
</tr>
<tr>
<td>DIAM3</td>
<td>N</td>
<td>Y</td>
<td>numeric(4,1) range</td>
</tr>
<tr>
<td>DIST3</td>
<td>N</td>
<td>Y</td>
<td>numeric(3,1) range</td>
</tr>
<tr>
<td>DIAM4</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1) range</td>
</tr>
<tr>
<td>DIST4</td>
<td>N</td>
<td>Y</td>
<td>numeric(3,1) range</td>
</tr>
<tr>
<td>DIAM5</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1) range</td>
</tr>
<tr>
<td>DIST5</td>
<td>N</td>
<td>Y</td>
<td>numeric(3,1) range</td>
</tr>
<tr>
<td>DIAM_END2</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1) range</td>
</tr>
<tr>
<td>EST_DIAM</td>
<td>N</td>
<td>Y</td>
<td>char(1) enum</td>
</tr>
<tr>
<td>LENGTH</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,2) range</td>
</tr>
</tbody>
</table>
LENGTHUP  N  Y  numeric(6,1)  range  0.0000  8.0000  m
BARK_MISSING  N  Y  numeric(6,1)  range  0.0000  8.5000  m²
ORIENT    N  Y  numeric(3,0)  range  3.0000  358.0000  deg
ASPECT    N  Y  numeric(3,0)  range  0.0000  357.0000  deg
SLOPE     N  Y  numeric(3,0)  range  0.0000  290.0000  %
BRANCH    N  Y  numeric(3,0)  range  0.0000  35.0000  number
VOLUME    N  Y  numeric(7,4)  range  0.4786  3.5770  m³
SURFAREA  N  Y  numeric(7,3)  range  6.2160  12.8320  m²
SAMPLEDATE N  N  datetime  range  9/8/1985  8/24/2016  YYYY-MM-DD
MOSS_COVER N  Y  numeric(3,0)  range  0.0000  100.0000  %
COMMENTS_FIELD N  N  char(254)  freetext

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>char(5)</td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>numeric(2,0)</td>
<td>range 2.0000 2.0000 number</td>
</tr>
<tr>
<td>STUDYID</td>
<td>char(3)</td>
<td>enum</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>numeric(3,0)</td>
<td>range 1.0000 12.0000 number</td>
</tr>
<tr>
<td>SECTION</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>PHOTODATE</td>
<td>datetime</td>
<td>range 11/30/1985 11/30/1985 YYYY-MM-DD</td>
</tr>
<tr>
<td>TIME</td>
<td>numeric(3,0)</td>
<td>range 0.0000 30.0000 years</td>
</tr>
<tr>
<td>TA</td>
<td>numeric(7,2)</td>
<td>range 700.0000 7500.0000 cm²</td>
</tr>
<tr>
<td>WA</td>
<td>numeric(7,2)</td>
<td>range 650.0000 6500.0000 cm²</td>
</tr>
<tr>
<td>BA</td>
<td>numeric(7,2)</td>
<td>range 12.0000 1500.0000 cm²</td>
</tr>
<tr>
<td>OBA</td>
<td>numeric(8,2)</td>
<td>range 48.7000 1000.0000 cm²</td>
</tr>
<tr>
<td>IBA</td>
<td>numeric(6,2)</td>
<td>range 0.0000 1000.0000 cm²</td>
</tr>
<tr>
<td>SWA</td>
<td>numeric(7,2)</td>
<td>range 119.7000 3500.0000 cm²</td>
</tr>
<tr>
<td>BSS</td>
<td>numeric(7,2)</td>
<td>range 0.0000 3500.0000 cm²</td>
</tr>
<tr>
<td>RSA</td>
<td>numeric(7,2)</td>
<td>range 0.0000 3500.0000 cm²</td>
</tr>
<tr>
<td>HWA</td>
<td>numeric(7,2)</td>
<td>range 350.0000 7000.0000 cm²</td>
</tr>
<tr>
<td>RHA</td>
<td>numeric(7,2)</td>
<td>range 0.0000 7000.0000 cm²</td>
</tr>
<tr>
<td>PTD</td>
<td>numeric(5,1)</td>
<td>range 10.0000 41.1000 cm</td>
</tr>
<tr>
<td>PTA</td>
<td>numeric(3,0)</td>
<td>range 0.0000 360.0000 deg Angle</td>
</tr>
<tr>
<td>PBD</td>
<td>numeric(5,1)</td>
<td>range 10.0000 40.0000 cm</td>
</tr>
</tbody>
</table>

2: Preliminary cross-sectional area of tissue types
The areal extent of tissue types (outer bark, inner bark, sapwood, and heartwood)

**Attribute List:**

- **DBCODE**: char(5) enum
- **ENTITY**: numeric(2,0) range 2.0000 2.0000 number
- **STUDYID**: char(3) enum
- **LOGNUM**: numeric(3,0) range 1.0000 12.0000 number
- **SECTION**: char(1) enum
- **PHOTODATE**: datetime range 11/30/1985 11/30/1985 YYYY-MM-DD
- **TIME**: numeric(3,0) range 0.0000 30.0000 years
- **TA**: numeric(7,2) range 700.0000 7500.0000 cm²
- **WA**: numeric(7,2) range 650.0000 6500.0000 cm²
- **BA**: numeric(7,2) range 12.0000 1500.0000 cm²
- **OBA**: numeric(8,2) range 48.7000 1000.0000 cm²
- **IBA**: numeric(6,2) range 0.0000 1000.0000 cm²
- **SWA**: numeric(7,2) range 119.7000 3500.0000 cm²
- **BSS**: numeric(7,2) range 0.0000 3500.0000 cm²
- **RSA**: numeric(7,2) range 0.0000 3500.0000 cm²
- **HWA**: numeric(7,2) range 350.0000 7000.0000 cm²
- **RHA**: numeric(7,2) range 0.0000 7000.0000 cm²
- **PTD**: numeric(5,1) range 10.0000 41.1000 cm
- **PTA**: numeric(3,0) range 0.0000 360.0000 deg Angle
- **PBD**: numeric(5,1) range 10.0000 40.0000 cm
### Sample volume, moisture, and density

**Attribute List:**

- **DBCODE**: char(5) enum
- **ENTITY**: numeric(2,0) range 3.0000 3.0000 number
- **SITECODE**: char(10) place
- **LOGNUM**: numeric(3,0) range 1.0000 900.0000 number
- **LOG_SPECIES**: char(4) taxa
- **SECTION**: char(1) enum
- **TIME**: numeric(3,0) range 0.0000 30.0000 years
- **YEAR**: numeric(4,0) range 1985.0000 2016.0000 YYYY
- **SUBTYPE**: char(1) enum
- **SHAPE**: char(1) enum
- **RADPOS**: numeric(2,0) range 0.0000 45.0000 number
- **D1**: numeric(5,1) range 1.0000 293.0000 mm
- **D2**: numeric(6,1) range 1.0000 1757.0000 mm
- **D3**: numeric(5,1) range 15.0000 703.0000 mm
- **D4**: numeric(4,1) range 0.0000 90.0000 deg
- **VOL1**: numeric(5,1) range 2.0000 1449.0000 ml
- **VOL2**: numeric(5,1) range 0.2000 774.0000 ml
- **AIRAREA**: numeric(5,1) range 0.0000 1990.0000 mm²
- **WETWT**: numeric(6,2) range 0.0000 567.6000 g
- **DRYWWT**: numeric(6,2) range 0.0100 492.0000 g
- **MOIST**: numeric(5,1) range 0.0000 1422.2000 %
- **DEN1**: numeric(5,3) range 0.0010 36.0400 g/ml
- **DEN2**: numeric(5,3) range 0.1530 1.1280 g/ml
- **KNOTVOL**: numeric(3,0) range 0.0000 80.0000 %
- **SAMPLEDATE**: datetime range 1/15/1985 12:00:00 AM to 10/1/2016 12:00:00 AM YYYY-MM-DD
- **COMMENTS_LAB**: char(254) freetext
### 4. Sample Wet and Dry Weights

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>N or Y</th>
<th>N or Y</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N</td>
<td>N</td>
<td>char(5)</td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N</td>
<td>N</td>
<td>numeric(2,0)</td>
<td>range 4.0000 4.0000</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N</td>
<td>Y</td>
<td>char(10)</td>
<td>place</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0)</td>
<td>range 0.0000 900.0000</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N</td>
<td>Y</td>
<td>char(4)</td>
<td>taxa</td>
</tr>
<tr>
<td>SECTION</td>
<td>Y</td>
<td>N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>TIME</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0)</td>
<td>range 0.0000 200.0000</td>
</tr>
<tr>
<td>YEAR</td>
<td>N</td>
<td>N</td>
<td>numeric(4,0)</td>
<td>range 1985.0000 2016.0000</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>Y</td>
<td>N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>RADPOS</td>
<td>Y</td>
<td>N</td>
<td>numeric(2,0)</td>
<td>range 0.0000 45.0000</td>
</tr>
<tr>
<td>WEIGHT_TYPE</td>
<td>Y</td>
<td>N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>N</td>
<td>N</td>
<td>numeric(7,2)</td>
<td>range 0.0000 590.0000</td>
</tr>
<tr>
<td>SAMPLEDATE</td>
<td>Y</td>
<td>N</td>
<td>datetime</td>
<td>range 11/25/1985 12:00:00 AM to 10/1/2016 12:00:00 AM</td>
</tr>
</tbody>
</table>

### 5. Wood and Bark Sample Outer Dimensions

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>N or Y</th>
<th>N or Y</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N</td>
<td>N</td>
<td>char(5)</td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N</td>
<td>N</td>
<td>numeric(2,0)</td>
<td>range 5.0000 5.0000</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N</td>
<td>Y</td>
<td>char(10)</td>
<td>place</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0)</td>
<td>range -1.0000 900.0000</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N</td>
<td>Y</td>
<td>char(4)</td>
<td>taxa</td>
</tr>
<tr>
<td>SECTION</td>
<td>Y</td>
<td>N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>TIME</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0)</td>
<td>range 0.0000 30.0000</td>
</tr>
<tr>
<td>YEAR</td>
<td>N</td>
<td>N</td>
<td>numeric(4,0)</td>
<td>range 1985.0000 2015.0000</td>
</tr>
<tr>
<td>RADPOS</td>
<td>Y</td>
<td>N</td>
<td>numeric(2,0)</td>
<td>range 0.0000 45.0000</td>
</tr>
<tr>
<td>SAWSET</td>
<td>N</td>
<td>Y</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>SHAPE</td>
<td>N</td>
<td>Y</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>Y</td>
<td>N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>RECTANGLE_TYPE</td>
<td>N</td>
<td>Y</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>GD1</td>
<td>N</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range 0.0000 293.0000</td>
</tr>
<tr>
<td>GD2</td>
<td>N</td>
<td>N</td>
<td>numeric(5,1)</td>
<td>range 0.0000 1757.0000</td>
</tr>
<tr>
<td>GD3</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1)</td>
<td>range 0.0000 512.0000</td>
</tr>
<tr>
<td>GD4</td>
<td>N</td>
<td>Y</td>
<td>numeric(5,1)</td>
<td>range 13.5000 20.0000</td>
</tr>
</tbody>
</table>
## Block and Sample Arrangement in Cross-sections

The arrangement of samples into transects (top to bottom, left to right)

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Options</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>6.0000  6.0000  number</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N Y</td>
<td>char(10)</td>
<td>place</td>
<td></td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
<td>1.0000  900.0000 number</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N N</td>
<td>char(4)</td>
<td>taxa</td>
<td></td>
</tr>
<tr>
<td>SECTION</td>
<td>Y N</td>
<td>char(1)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
<td>0.0000  30.0000 years</td>
</tr>
<tr>
<td>YEAR</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range</td>
<td>1985.0000-2015.0000 YYYY</td>
</tr>
<tr>
<td>SB1</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>1.0000  2.0000 number</td>
</tr>
<tr>
<td>DS1</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>1.0000  7.0000 number</td>
</tr>
<tr>
<td>EB1</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>4.0000  25.0000 number</td>
</tr>
<tr>
<td>DE1</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>7.0000  25.0000 number</td>
</tr>
<tr>
<td>SB2</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>5.0000  25.0000 number</td>
</tr>
<tr>
<td>DS2</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>10.0000 27.0000 number</td>
</tr>
<tr>
<td>EB2</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>6.0000  35.0000 number</td>
</tr>
<tr>
<td>DE2</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>10.0000 35.0000 number</td>
</tr>
<tr>
<td>SB3</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>7.0000  36.0000 number</td>
</tr>
<tr>
<td>DS3</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>10.0000 38.0000 number</td>
</tr>
<tr>
<td>EB3</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>8.0000  45.0000 number</td>
</tr>
<tr>
<td>DE3</td>
<td>N Y</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>15.0000 45.0000 number</td>
</tr>
<tr>
<td>PITH</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>-1.0000 45.0000 number</td>
</tr>
</tbody>
</table>

## Knot Volume Correction Estimate for Wood Samples

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Options</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>7.0000  7.0000  number</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N Y</td>
<td>char(10)</td>
<td>place</td>
<td></td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
<td>3.0000  833.0000 number</td>
</tr>
</tbody>
</table>
LOG_SPECIES N Y char(4) taxa
SECTION Y N char(1) enum
TIME Y N numeric(3,0) range 0.0000 20.0000 years
YEAR N N numeric(4,0) range 1985.0000-2005.0000 YYYY
RADPOS Y Y numeric(2,0) range 1.0000 44.0000 number
KNOTVOL N N numeric(3,0) range 0.0000 80.0000 %
EXAMDATE N N datetime range 12/12/1985 12:00:00 AM 10/21/2005 12:00:00 AM YYYY-MM-DD

8. Ryan et al Cell Wall Chemistry of Bark and Wood Samples

**Attribute List:**

DBCODE N N char(5) enum
ENTITY N N numeric(2,0) range 8.0000 8.0000 number
STUDYID Y N char(3) enum
LOG_SPECIES Y N char(4) taxa
TIME Y N numeric(3,0) range 0.0000 7.0000 years
YEAR Y N numeric(4,0) range 1985.0000-1993.0000 YYYY
SUBTYPE Y N char(1) enum
SUBNUM Y N numeric(2,0) range 1.0000 3.0000 number
ASH N N numeric(6,3) range 0.0000 3.9000 %
LIGNINR N Y numeric(6,2) range 20.8700 71.8300 %
ACIDSOL N Y numeric(6,2) range 16.1300 71.1600 %
NPE N N numeric(6,2) range 0.1900 18.5600 %
WSE N N numeric(6,2) range 3.1100 16.2100 %
WSSUG N N numeric(6,2) range 0.4300 7.2700 %
ASSUG N Y numeric(6,2) range 2.8600 79.6100 %
TANNIN N N numeric(6,2) range 0.2000 8.3100 %

9. Radial Bark Thickness

The radial thickness of inner and outer bark of the undecayed logs

**Attribute List:**

DBCODE N N char(5) enum
ENTITY N N numeric(2,0) range 9.0000 9.0000 number
SITECODE N Y char(10) place
LOGNUM Y N numeric(3,0) range 1.0000 900.0000 number
LOG_SPECIES N Y char(4) taxa
SECTION Y N char(1) enum
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range 0.0000 15.0000 years</td>
</tr>
<tr>
<td>YEAR</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range 1985.0000-1992.0000 YYYY</td>
</tr>
<tr>
<td>PIECE</td>
<td>Y N</td>
<td>numeric(2,0)</td>
<td>range 1.0000 2.0000 number</td>
</tr>
<tr>
<td>OB1</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 0.0000 65.0000 mm</td>
</tr>
<tr>
<td>OB2</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 0.0000 60.0000 mm</td>
</tr>
<tr>
<td>OB3</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 0.0000 45.0000 mm</td>
</tr>
<tr>
<td>OB4</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 1.0000 52.0000 mm</td>
</tr>
<tr>
<td>IB1</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 1.0000 21.0000 mm</td>
</tr>
<tr>
<td>IB2</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 0.0000 23.0000 mm</td>
</tr>
<tr>
<td>IB3</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 0.0000 17.0000 mm</td>
</tr>
<tr>
<td>IB4</td>
<td>N Y</td>
<td>numeric(3,0)</td>
<td>range 1.0000 16.0000 mm</td>
</tr>
<tr>
<td>SAMPLEDATE</td>
<td>N N</td>
<td>datetime</td>
<td>range 11/30/1985-12/00/1992 YYYY-MM-DD</td>
</tr>
</tbody>
</table>

### 10. Insect Galleries

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5)</td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range 10.0000 10.0000 number</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N Y</td>
<td>char(10)</td>
<td>place</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range 11.0000 523.0000 number</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N N</td>
<td>char(4)</td>
<td>taxa</td>
</tr>
<tr>
<td>TIME</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range 1.0000 4.0000 years</td>
</tr>
<tr>
<td>YEAR</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range 1986.0000-1989.0000 YYYY</td>
</tr>
<tr>
<td>TREATMNT</td>
<td>Y Y</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>SEGMENT</td>
<td>Y Y</td>
<td>char(2)</td>
<td>freetext</td>
</tr>
<tr>
<td>POSITION</td>
<td>Y N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>ABG</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range 0.0000 49.0000 number</td>
</tr>
<tr>
<td>ABA</td>
<td>N N</td>
<td>numeric(7,3)</td>
<td>range 0.0630 0.0630 m2</td>
</tr>
<tr>
<td>BBG</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range 0.0000 21.0000 number</td>
</tr>
<tr>
<td>BBA</td>
<td>N N</td>
<td>numeric(7,3)</td>
<td>range 0.0000 5.6960 m2</td>
</tr>
<tr>
<td>WBG</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range 0.0000 22.0000 number</td>
</tr>
<tr>
<td>WBA</td>
<td>N N</td>
<td>numeric(7,3)</td>
<td>range 0.0000 5.6960 m2</td>
</tr>
<tr>
<td>SAMPLEDATE</td>
<td>N N</td>
<td>datetime</td>
<td>range 9/9/1986-10/5/1989 YYYY-MM-DD</td>
</tr>
</tbody>
</table>

### 11. Nutrient Content of Bark, Wood, Fungal, and Insect Samples

**Attribute List:**
### Attribute List:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Required</th>
<th>Optional</th>
<th>Type</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N</td>
<td>N</td>
<td>char(5)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>ENTITY</td>
<td>N</td>
<td>N</td>
<td>numeric(2,0)</td>
<td>range</td>
<td>12.0000 12.0000 number</td>
</tr>
<tr>
<td>SITECODE</td>
<td>Y</td>
<td>Y</td>
<td>char(10)</td>
<td>place</td>
<td></td>
</tr>
<tr>
<td>STUDYID</td>
<td>N</td>
<td>N</td>
<td>char(3)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y</td>
<td>Y</td>
<td>numeric(3,0)</td>
<td>range</td>
<td>0.0000 523.0000 number</td>
</tr>
<tr>
<td>SAMPLED_SPECIES</td>
<td>N</td>
<td>Y</td>
<td>char(4)</td>
<td>taxa</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>Y</td>
<td>N</td>
<td>numeric(3,0)</td>
<td>range</td>
<td>0.0000 7.0000 years</td>
</tr>
<tr>
<td>YEAR</td>
<td>N</td>
<td>N</td>
<td>numeric(4,0)</td>
<td>range</td>
<td>1987.0000 1994.0000 YYYY</td>
</tr>
<tr>
<td>PIECENUM</td>
<td>Y</td>
<td>N</td>
<td>char(1)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,2)</td>
<td>range</td>
<td>0.0000 11.2000 %</td>
</tr>
<tr>
<td>AL</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 5066.2002 ppm</td>
</tr>
<tr>
<td>B</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 3074.0000 ppm</td>
</tr>
<tr>
<td>CA</td>
<td>N</td>
<td>Y</td>
<td>numeric(8,1)</td>
<td>range</td>
<td>0.0000 121200.0000 ppm</td>
</tr>
<tr>
<td>CU</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 86.2000 ppm</td>
</tr>
<tr>
<td>FE</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 9966.4004 ppm</td>
</tr>
<tr>
<td>K</td>
<td>N</td>
<td>Y</td>
<td>numeric(8,0)</td>
<td>range</td>
<td>0.0000 43490.0000 ppm</td>
</tr>
<tr>
<td>MG</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 3498.6001 ppm</td>
</tr>
<tr>
<td>MN</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 1025.8000 ppm</td>
</tr>
<tr>
<td>P</td>
<td>N</td>
<td>Y</td>
<td>numeric(8,1)</td>
<td>range</td>
<td>0.0000 1500.0000 ppm</td>
</tr>
<tr>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>numeric(6,1)</td>
<td>range</td>
<td>0.0000 1025.8000 ppm</td>
</tr>
<tr>
<td>ZN</td>
<td>N</td>
<td>Y</td>
<td>numeric(8,1)</td>
<td>range</td>
<td>0.0000 309.4000 ppm</td>
</tr>
<tr>
<td>NA</td>
<td>N</td>
<td>Y</td>
<td>numeric(8,1)</td>
<td>range</td>
<td>0.0000 841.3000 ppm</td>
</tr>
<tr>
<td>LAB</td>
<td>N</td>
<td>N</td>
<td>char(3)</td>
<td>enum</td>
<td></td>
</tr>
</tbody>
</table>

### 12. Van Soest Cell Wall Chemistry of Wood and Bark Samples

**Attribute List:**

- **DBCODE**: N N char(5) enum
- **ENTITY**: N N numeric(2,0) range 12.0000 12.0000 number
- **SITECODE**: N Y char(10) place
- **STUDYID**: N N char(3) enum
- **LOGNUM**: Y N numeric(3,0) range 11.0000 520.0000 number
- **LOG_SPECIES**: N N char(4) taxa
- **TIME**: Y N numeric(3,0) range 0.0000 3.0000 years
- **YEAR**: N N numeric(4,0) range 1987.0000 1989.0000 YYYY

**Additional Attributes:**

- **N Y** numeric(6,2) range 0.0000 11.2000 %
- **AL**: N Y numeric(6,1) range 0.0000 5066.2002 ppm
- **B**: N Y numeric(6,1) range 0.0000 3074.0000 ppm
- **CA**: N Y numeric(8,1) range 0.0000 121200.0000 ppm
- **CU**: N Y numeric(6,1) range 0.0000 86.2000 ppm
- **FE**: N Y numeric(6,1) range 0.0000 9966.4004 ppm
- **K**: N Y numeric(8,0) range 0.0000 43490.0000 ppm
- **MG**: N Y numeric(6,1) range 0.0000 3498.6001 ppm
- **MN**: N Y numeric(6,1) range 0.0000 1025.8000 ppm
- **P**: N Y numeric(8,1) range 0.0000 10033.8000 ppm
- **S**: N Y numeric(6,1) range 0.0000 1500.0000 ppm
- **ZN**: N Y numeric(8,1) range 0.0000 309.4000 ppm
- **NA**: N Y numeric(8,1) range 0.0000 841.3000 ppm
- **LAB**: N N char(3) enum

**Note:** The table includes a range of chemical concentrations and additional metadata, such as dates and place details.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Y/N</th>
<th>Data Type</th>
<th>Description</th>
<th>Range/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBTYPE</td>
<td>Y/N</td>
<td>char(1)</td>
<td>enum</td>
<td></td>
</tr>
<tr>
<td>SAMPLENUM</td>
<td>Y/N</td>
<td>numeric(1,0)</td>
<td>range</td>
<td>1.0000 2.0000 number</td>
</tr>
<tr>
<td>ADF</td>
<td>N/N</td>
<td>numeric(5,2)</td>
<td>range</td>
<td>14.8500 51.2100 %</td>
</tr>
<tr>
<td>LIGNINV</td>
<td>N/N</td>
<td>numeric(5,2)</td>
<td>range</td>
<td>20.6700 62.9700 %</td>
</tr>
<tr>
<td>CELL</td>
<td>N/N</td>
<td>numeric(5,2)</td>
<td>range</td>
<td>6.4100 51.1700 %</td>
</tr>
<tr>
<td>ASH</td>
<td>N/N</td>
<td>numeric(6,3)</td>
<td>range</td>
<td>0.0300 1.4200 %</td>
</tr>
<tr>
<td>SAMPLEDATE</td>
<td>N/N</td>
<td>datetime</td>
<td>range</td>
<td>7/30/1987 6/20/1989 12:00:00 AM 12:00:00 AM YYYY-MM-DD</td>
</tr>
</tbody>
</table>

**13. Log Location Survey Notes**

Used to Produce Maps

**Attribute List:**

- **DBCODE** N/N char(5) enum
- **ENTITY** N/N numeric(2,0) range 13.0000 13.0000 number
- **SITECODE** N/Y char(10) place
- **SITE** N/N char(1) enum
- **LOGNUM** Y/N numeric(3,0) range 1.0000 900.0000 number
- **LOG_SPECIES** N/Y char(4) taxa
- **POST** Y/N char(1) enum
- **BEARING** N/N char(4) freetext
- **DIST** N/N numeric(6,2) range 1.1000 35.4800 m
- **ANGLE** N/N numeric(6,0) range -45.0000 55.0000 deg

**14. Sporocarp Counts from Logs**

**Attribute List:**

- **DBCODE** N/N char(5) enum
- **ENTITY** N/N numeric(2,0) range 14.0000 14.0000 number
- **SITECODE** N/Y char(10) place
- **LOGNUM** Y/N numeric(3,0) range 1.0000 526.0000 number
- **LOG_SPECIES** N/N char(4) taxa
- **TIME** Y/N numeric(3,0) range 0.0000 7.0000 years
- **YEAR** N/N numeric(4,0) range 1985.0000-992.0000 YYYY
- **SPOROCAR** N/N numeric(6,0) range 0.0000 5850.0000 number
- **FUNGI_SPECIES** Y/Y char(4) taxa
- **MEANWT** N/N numeric(7,3) range 0.0000 51.8810 g
- **SAMPLEDATE** N/N datetime range 11/1/1985 11/30/1992 12:00:00 AM 12:00:00 AM YYYY-MM-DD
### 15. Bark Sample Volumes from Water Displacement

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5)</td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N Y</td>
<td>char(10)</td>
<td>place</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N Y</td>
<td>char(4)</td>
<td>taxa</td>
</tr>
<tr>
<td>SECTION</td>
<td>Y N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>TIME</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
</tr>
<tr>
<td>YEAR</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>Y N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>SAMPLENUM</td>
<td>Y N</td>
<td>numeric(1,0)</td>
<td>range</td>
</tr>
<tr>
<td>WVOL</td>
<td>N Y</td>
<td>numeric(5,0)</td>
<td>range</td>
</tr>
<tr>
<td>SAMPLEDATE</td>
<td>N N</td>
<td>datetime</td>
<td>YYYY-MM-DD</td>
</tr>
</tbody>
</table>

### 16. Entire cross-section method: data for tissue dimensions, total mass, total volume, and density

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5)</td>
<td>enum</td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N Y</td>
<td>char(10)</td>
<td>place</td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N Y</td>
<td>char(4)</td>
<td>taxa</td>
</tr>
<tr>
<td>SECTION</td>
<td>Y N</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>TIME</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range</td>
</tr>
<tr>
<td>YEAR</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range</td>
</tr>
<tr>
<td>BFRAG</td>
<td>N Y</td>
<td>char(10)</td>
<td>enum</td>
</tr>
<tr>
<td>BCIRC_LEN</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range</td>
</tr>
<tr>
<td>BRAD</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range</td>
</tr>
<tr>
<td>BLONG</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range</td>
</tr>
<tr>
<td>BDIAM</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range</td>
</tr>
<tr>
<td>BTOT_WET</td>
<td>N Y</td>
<td>numeric(7,2)</td>
<td>range</td>
</tr>
<tr>
<td>BTOT_DRY</td>
<td>N Y</td>
<td>numeric(7,2)</td>
<td>range</td>
</tr>
<tr>
<td>SFRAG</td>
<td>N Y</td>
<td>char(1)</td>
<td>enum</td>
</tr>
<tr>
<td>SCIRC_LEN</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range</td>
</tr>
<tr>
<td>SRAD</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type</td>
<td>Description</td>
<td>Range</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SLONG</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range 0.0000 105.5000 mm</td>
</tr>
<tr>
<td>SDIAM</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range 0.0000 57.0000 cm</td>
</tr>
<tr>
<td>STOT_WET</td>
<td>N Y</td>
<td>numeric(7,2)</td>
<td>range 0.0000 4905.5000 g</td>
</tr>
<tr>
<td>STOT_DRY</td>
<td>N Y</td>
<td>numeric(7,2)</td>
<td>range 0.0000 1875.3500 g</td>
</tr>
<tr>
<td>HFRAG</td>
<td>N Y</td>
<td>char(1) enum</td>
<td></td>
</tr>
<tr>
<td>HRAD</td>
<td>N Y</td>
<td>numeric(4,1)</td>
<td>range 107.0000 272.0000 mm</td>
</tr>
<tr>
<td>HLONG</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range 65.7000 106.9000 mm</td>
</tr>
<tr>
<td>HDIAM</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range 21.3000 54.3000 cm</td>
</tr>
<tr>
<td>HTOT_WET</td>
<td>N Y</td>
<td>numeric(7,2)</td>
<td>range 753.5000 9690.0000 g</td>
</tr>
<tr>
<td>HTOT_DRY</td>
<td>N Y</td>
<td>numeric(7,2)</td>
<td>range 322.6500 6977.1900 g</td>
</tr>
<tr>
<td>B_VOL</td>
<td>N Y</td>
<td>numeric(9,2)</td>
<td>range 0.0000 2939.2000 cm3</td>
</tr>
<tr>
<td>S_VOL</td>
<td>N Y</td>
<td>numeric(9,2)</td>
<td>range 0.0000 11314.9600 cm3</td>
</tr>
<tr>
<td>H_VOL</td>
<td>N Y</td>
<td>numeric(9,2)</td>
<td>range 2950.4000 22405.2500 cm3</td>
</tr>
<tr>
<td>B_DENSITY</td>
<td>N Y</td>
<td>numeric(4,2)</td>
<td>range 0.0400 0.3700 g/cm3</td>
</tr>
<tr>
<td>S_DENSITY</td>
<td>N Y</td>
<td>numeric(4,2)</td>
<td>range 0.0400 0.3800 g/cm3</td>
</tr>
<tr>
<td>H_DENSITY</td>
<td>N Y</td>
<td>numeric(4,2)</td>
<td>range 0.0700 0.4800 g/cm3</td>
</tr>
<tr>
<td>SAMPLEDATE</td>
<td>N N</td>
<td>datetime</td>
<td>range 10/27/2015 12:00:00 AM 12/9/2015 12:00:00 AM YYYY-MM-DD</td>
</tr>
</tbody>
</table>

**17. Entire cross-section method: data for subsample dimensions, mass, and density**

**Attribute List:**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBCODE</td>
<td>N N</td>
<td>char(5) enum</td>
<td></td>
</tr>
<tr>
<td>ENTITY</td>
<td>N N</td>
<td>numeric(2,0)</td>
<td>range 17.0000 17.0000 number</td>
</tr>
<tr>
<td>SITECODE</td>
<td>N Y</td>
<td>char(10) place</td>
<td></td>
</tr>
<tr>
<td>LOGNUM</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range 4.0000 526.0000 number</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>N Y</td>
<td>char(4) taxa</td>
<td></td>
</tr>
<tr>
<td>SECTION</td>
<td>Y N</td>
<td>char(1) enum</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>Y N</td>
<td>numeric(3,0)</td>
<td>range 30.0000 30.0000 years</td>
</tr>
<tr>
<td>YEAR</td>
<td>N N</td>
<td>numeric(4,0)</td>
<td>range 2015.0000 2015.0000 YYYY</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>Y N</td>
<td>char(1) enum</td>
<td></td>
</tr>
<tr>
<td>SHAPE</td>
<td>N N</td>
<td>char(1) enum</td>
<td></td>
</tr>
<tr>
<td>W_RADPOS</td>
<td>Y N</td>
<td>char(1) enum</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range 0.0000 293.0000 mm</td>
</tr>
<tr>
<td>D3</td>
<td>N Y</td>
<td>numeric(5,1)</td>
<td>range 0.0000 116.0000 mm</td>
</tr>
<tr>
<td>D4</td>
<td>N Y</td>
<td>numeric(4,1)</td>
<td>range 13.5000 13.5000 deg angle</td>
</tr>
<tr>
<td>D2</td>
<td>N Y</td>
<td>numeric(6,1)</td>
<td>range 0.0000 1757.0000 mm</td>
</tr>
</tbody>
</table>
### 18. Areas of sound and rotten tissues based on digitized photographic slides of cross-sections

**Attribute List:**

- **DBCODE** | N | N | char(5) | enum
- **ENTITY** | N | N | numeric(2,0) | range | 18.0000 | 18.0000 | number
- **SITECODE** | N | Y | char(10) | place
- **LOGNUM** | Y | N | numeric(3,0) | range | 1.0000 | 900.0000 | number
- **LOG_SPECIES** | N | N | char(4) | taxa
- **SECTION** | Y | N | char(1) | enum
- **TIME** | Y | N | numeric(3,0) | range | 0.0000 | 16.0000 | years
- **YEAR** | N | N | numeric(4,0) | range | 1985.0000 | 2001.0000 | YYYY
- **SAMPLENUM** | Y | N | numeric(1,0) | range | 1.0000 | 2.0000 | number
- **TA** | N | Y | numeric(7,2) | range | 0.0000 | 10000.0000 | cm²
- **WA** | N | Y | numeric(7,2) | range | 0.0000 | 10000.0000 | cm²
- **BSS** | N | Y | numeric(7,2) | range | 0.0000 | 10000.0000 | cm²
- **HWA** | N | Y | numeric(7,2) | range | 0.0000 | 10000.0000 | cm²
- **SOWA** | N | Y | numeric(7,2) | range | 0.0000 | 10000.0000 | cm²
- **SOHWA** | N | Y | numeric(7,2) | range | 0.0000 | 10000.0000 | cm²
- **NOTES** | N | Y | char(254) | freetext

### 19. Computed diameter and areas of sound and rotten tissues based on digitized photographic slides of cross-sections

Derived from digitized data (entity 18)

**Attribute List:**

- **DBCODE** | N | N | char(5) | enum
- **ENTITY** | N | N | numeric(2,0) | range | 19.0000 | 19.0000 | number
- **SITECODE** | N | Y | char(10) | place
- **LOGNUM** | Y | N | numeric(3,0) | range | 1.0000 | 900.0000 | number
- **LOG_SPECIES** | N | N | char(4) | taxa
- **SECTION** | Y | N | char(1) | enum
- **TIME** | Y | N | numeric(3,0) | range | 0.0000 | 16.0000 | years
- **YEAR** | N | N | numeric(4,0) | range | 1985.0000 | 2001.0000 | YYYY
### Sample Numbers

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Y/N</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLENUM</td>
<td>Y/N</td>
<td>numeric(1,0)</td>
<td>1.0000 2.0000</td>
</tr>
<tr>
<td>TA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>1023.0100 1029.5600 cm²</td>
</tr>
<tr>
<td>WA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>847.0900 3612.0700 cm²</td>
</tr>
<tr>
<td>BA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>0.0000 1289.4600 cm²</td>
</tr>
<tr>
<td>IBA</td>
<td>N/Y</td>
<td>numeric(6,2)</td>
<td>0.0000 163.4400 cm²</td>
</tr>
<tr>
<td>OBA</td>
<td>N/Y</td>
<td>numeric(8,2)</td>
<td>0.0000 1226.6300 cm²</td>
</tr>
<tr>
<td>SWA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>21.7300 2484.8100 cm²</td>
</tr>
<tr>
<td>BSS</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>0.0000 1679.7500 cm²</td>
</tr>
<tr>
<td>RSA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>0.0000 1397.3000 cm²</td>
</tr>
<tr>
<td>HWA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>220.4800 3011.4000 cm²</td>
</tr>
<tr>
<td>RHA</td>
<td>N/Y</td>
<td>numeric(7,2)</td>
<td>0.0000 1949.0000 cm²</td>
</tr>
<tr>
<td>DIAM_EST</td>
<td>N/Y</td>
<td>numeric(4,1)</td>
<td>36.1000 71.6000 cm</td>
</tr>
</tbody>
</table>

**20. Polar coordinate (distance and angle) location of pith relative to the outer surface of cross-sections**

Distance and angle data for pith to external parts of cross-section. See related file: Idealized cross-section diagram

**Attribute List:**

- **DBCODE** N N char(5) enum
- **ENTITY** N N numeric(2,0) range 20.0000 20.0000 number
- **SITECODE** N N char(10) place
- **LOGNUM** Y N numeric(3,0) range 1.0000 900.0000 number
- **LOG_SPECIES** N N char(4) taxa
- **SECTION** Y N char(1) enum
- **TIME** Y N numeric(3,0) range 0.0000 7.0000 years
- **YEAR** N N numeric(4,0) range 1985.0000 1992.0000 YYYY
- **SAMPLENUM** Y N numeric(1,0) range 1.0000 2.0000 number
- **PTD** N Y numeric(5,1) range 10.2000 146.3000 cm
- **PTA** N Y numeric(3,0) range 1.0000 360.0000 deg angle cm
- **PBD** N Y numeric(5,1) range 3.2000 310.6000 cm
- **PsI D** N Y numeric(3,0) range 2.0000 360.0000 deg angle cm
- **PsI A** N Y numeric(5,1) range 15.5000 226.8000 deg angle cm
- **Ps2 D** N Y numeric(5,1) range 3.0000 360.0000 deg angle cm
- **Ps2 A** N Y numeric(3,0) range 2.4000 250.4000 deg angle cm

**21. Decomposition equation summary data**

**Attribute List:**

- **DBCODE** N N char(5) enum
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTITY</td>
<td>N Numeric(2,0) range 21.0000 21.0000 number</td>
</tr>
<tr>
<td>SITECODE</td>
<td>Y Numeric(10) place</td>
</tr>
<tr>
<td>SITE</td>
<td>N Numeric(1) enum</td>
</tr>
<tr>
<td>LOG_SPECIES</td>
<td>Y Numeric(4) taxa</td>
</tr>
<tr>
<td>SUBTYPE</td>
<td>Y Numeric(1) enum</td>
</tr>
<tr>
<td>EQN_FORM</td>
<td>Y Numeric(6) enum</td>
</tr>
<tr>
<td>N_OBS</td>
<td>N Numeric(3,0) range 1.0000 15.0000 number</td>
</tr>
<tr>
<td>DECAY_RATE</td>
<td>Y Numeric(5,3) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>DECAY_RATE_SE</td>
<td>Y Numeric(5,3) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>INTERCEPT</td>
<td>Y Numeric(4,2) range 0.0000 2.0000 number</td>
</tr>
<tr>
<td>INTERCEPT_SE</td>
<td>Y Numeric(4,2) range 0.0000 2.0000 number</td>
</tr>
<tr>
<td>INTERCEPT_FORCED</td>
<td>N char(1) enum</td>
</tr>
<tr>
<td>DECAY_RATE_PV</td>
<td>Y Numeric(6,4) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>INTERCEPT_PV</td>
<td>Y Numeric(6,4) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>LAG</td>
<td>Y Numeric(4,2) range 0.0000 20.0000 number</td>
</tr>
<tr>
<td>LAG_SE</td>
<td>Y Numeric(4,2) range 0.0000 20.0000 number</td>
</tr>
<tr>
<td>LAG_PV</td>
<td>Y Numeric(6,4) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>R_SQUARED</td>
<td>N Numeric(8,4) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>OVERALL_PV</td>
<td>N char(1) enum</td>
</tr>
<tr>
<td>DECAY_LAG_CORR</td>
<td>Y Numeric(6,4) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>DECAY_INTERCEPT_CORR</td>
<td>Y Numeric(7,4) range -0.7846 1.0000 number</td>
</tr>
<tr>
<td>P1T0</td>
<td>Y Numeric(4,2) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>P1T0_SE</td>
<td>Y Numeric(10,2) range 0.0000 3077.3000 number</td>
</tr>
<tr>
<td>DECAY_RATE_K1</td>
<td>Y Numeric(5,3) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>DECAY_RATE_K1_SE</td>
<td>Y Numeric(8,3) range 0.0000 10.1000 number</td>
</tr>
<tr>
<td>DECAY_RATE_K2</td>
<td>Y Numeric(5,3) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>DECAY_RATE_K2_SE</td>
<td>Y Numeric(9,3) range 0.0000 79.1900 number</td>
</tr>
<tr>
<td>K1_K2_CORR</td>
<td>Y Numeric(6,4) range 0.0000 1.0000 number</td>
</tr>
<tr>
<td>K1_P1T0_CORR</td>
<td>Y Numeric(7,4) range -0.9997 1.0000 number</td>
</tr>
</tbody>
</table>

**Attributes Definitions:**

ABA  
*Area of sample for ambrosia beetles*

ABG  
*Number of ambrosia beetle galleries in area*
ACIDSOL
Acid soluble carbohydrates, based upon Effland 1977 Tappi 6(100) digestion in 72% sulfuric acid, this is for extractive free wood

ADF
Acid detergent fiber approximates hemicellulose fraction, non extracted wood

AIRAREA
Area of bark in air voids, measured with a wire grid, missing after 1986

AL
Aluminum concentration (icap inductively coupled argon spectrophotometry)

ANGLE
Slope from post to log

ASH
Ash content

ASPECT
Aspect of ground at point of placement. used of log with respect to aspect.

ASSUG
Percent of acid soluble carbohydrates that is sugar, using phenol-sulfuric a

B
Boron concentration (icap inductively coupled argon spectrophotometry)

B_DENSITY
Density of bark based on dry weight and volume

B_VOL
Total bark volume

BA
Bark cross-sectional area including inner and outer

BARK_MISSING
Cover of bark missing on log

BBA
Area of sample for bark bettles

BBG
Number of bark beetle galleries in area

BCIRC_LEN
Circumferential length of bark if present and fragmented

BDIAM
Diameter of x-sec if bark not fragmented

BEARING
Bearing from post to end of log nearest road. The leading letter is the initial cardinal direction, the final letter is off of the starting direction, the number is the number of degrees from the starting direction to the actual bearing. (related file)

BFRAG
Is bark fragmented?

**BLONG**
Longitudinal length of bark

**BRAD**
Radial thickness of bark

**BRANCH**
Number of branches with fresh wounds.

**BSS**
Blue-stained sapwood cross-sectional area

**BTOT_DRY**
Total dry weight of bark

**BTOT_WET**
Total wet weight of bark

**CA**
Calcium concentration (icap inductively coupled argon spectrophotometry)

**CELL**
Cellulose content, nonextracted wood

**COMMENTS_FIELD**
Comments from field data sheets

**COMMENTS_LAB**
Comments from lab data sheets

**CU**
Copper concentration (icap inductively coupled argon spectrophotometry)

**D1**
Dimension in radial direction

**D2**
Dimension in tangential direction. If missing then volume calculated using other radial measurement (D1, D3, D4, or volume known).

**D3**
Dimension in longitudinal direction, if missing then calculated

**D4**
Angle, in degrees, if triangle shape

**DBCODE**
FSDB Database code

**DD1**
Radial dimension of oven dried piece

**DD2**
Tangential dimension of oven dried piece
DE1
Dimensional end of diameter #1; end regular portion of diameter #1, if different from above

DE2
Dimensional end of diameter #2; end regular portion of diameter #2, if different from above

DE3
Dimensional end of diameter #3; end regular portion of diameter #3, if different from above

DECAY_INTERCEPT_CORR
Correlation between k and intercept parameters used for single exponential model only

DECAY_LAG_CORR
Correlation between k and lag parameters, used for lag model only

DECAY_RATE
Decomposition rate-constant (k) estimated parameter

DECAY_RATE_K1
Decomposition rate-constant for part 1 (k1) estimated parameter for dual exponential

DECAY_RATE_K1_SE
Standard error of the k1 estimated parameter

DECAY_RATE_K2
Decomposition rate-constant for part 2 (k2) estimated parameter for dual exponential

DECAY_RATE_K2_SE
Standard error of the k2 estimated parameter

DECAY_RATE_PV
p-value of k parameter

DECAY_RATE_SE
Standard error of decomposition rate-constant estimated parameter

DEN
Density based on dry weight

DEN1
Density based on dry wt. and vol 1. this is apparent density including air voids

DEN2
Density based on dry wt. and vol2. this is actual density for bark

DIAM_END1
diameter of large end of log

DIAM_END2
diameter of smaller end of log

DIAM_EST
estimated diameter from total area

DIAM_MID
diameter of middle of log
DIAM1

diameter of first sample cut
DIAM2

diameter of second sample cut
DIAM3

diameter of third sample cut
DIAM4

diameter of fourth sample cut
DIAM5

diameter of fifth sample cut
DIST
  Slope distance to the log from post
DIST_MID
  distance to middle of log from large end
DIST1
  distance from large end to first sample cut
DIST2
  distance from large end to second sample cut
DIST3
  distance from large end to third sample cut
DIST4
  distance from large end to fourth sample cut
DIST5
  distance from large end to fifth sample cut
DRYWT
  Dry weight of sample. dried 7 days at 55 degree c
DS1
  Dimensional start of diameter #1; start of regular portion of diameter #1, if different from above
DS2
  Dimensional start of diameter #2; start of regular portion of diameter #2, if different from above
DS3
  Dimensional start of diameter #3; start of regular portion of diameter #3, if different from above
EB1
  Wood piece diameter #1 ends on a sequential number of sample position. actual end of #1
EB2
  Wood piece diameter #2 ends on a sequential number of sample position. actual end of #2
Wood piece diameter #3 ends on a sequential number of sample position. actual end of #3

ENTITY
Entity number

EQN_FORM
Defines the model equation used to estimate parameters

EST_DIAM
log diameter estimated from photo

EXAMDATE
Date the piece was examined. for years 1-4 these are approximate dates.

FE
Iron concentration (icap inductively coupled argon spectrophotometry)

FUNGI_SPECIES
Type of sporocarps analyzed

GD1
Radial dimension of green piece, measurements taken before oven drying (which can cause shrinkage), measured with caliper

GD2
Tangential dimension of green piece, measurements taken before oven drying (which can cause shrinkage)

GD3
Longitudinal dimension of green piece, measurements taken before oven drying (which can cause shrinkage)

GD4
Green dimension angle if shape=4

H_DENSITY
Density of heartwood based on dry weight and volume

H_VOL
Total heartwood volume

HDIAM
Diameter of heartwood

HFRAG
Is heartwood fragmented?

HLONG
Longitudinal length of heartwood

HRAD
Radial thickness of heartwood

HTOT_DRY
Total dry weight of heartwood

HTOT_WET
Total wet weight of heartwood

HWA

Heartwood cross-sectional area

IB1

Inner bark thickness at top log

IB2

Inner bark thickness at right side of log

IB3

Inner bark thickness at bottom of log

IB4

Inner bark thickness at left side of log

IBA

Inner bark cross-sectional area

INTERCEPT

Intercept estimated parameter

INTERCEPT_FORCED

Intercept forced to be between 0.95 and 1.05 for linear and equal to 1 for lag and dual-exponential equations at time 0 (Y,N)

INTERCEPT_PV

p-value of intercept parameter

INTERCEPT_SE

Standard error of intercept estimated parameter

K

Potassium concentration (icap inductively coupled argon spectrophotometry)

K1_K2_CORR

Correlation between k1 and k2, used for dual exponential model only

K1_P1T0_CORR

Correlation between k1 and proportion of mass for k1 used for dual exponential model only

KNOTVOL

Volume of wood block that is knot

LAB

Code for laboratory responsible for analysis

LAG

Lag estimated parameter

LAG_PV

p-value of lag parameter

LAG_SE

Standard error of lag estimated parameter
LENGTH
    Total log length

LENGTHUP
    Length of log suspended off ground

LIGNINR
    Lignin content based on Effland 1977 Tappi 6(10) lignin is defined as the residual digest at 100°C. This for extract free wood

LIGNINV
    Lignin content, non extracted wood

LOG_SPECIES
    Species of log

LOGNUM
    Number of log

MEANWT
    Mean weight of fungus

MG
    Magnesium concentration (cap inductively coupled argon spectrophotometry)

MN
    Manganese concentration (icap inductively coupled argon spectrophotometry)

MOIST
    Moisture content of sample. calculated from wet wt and dry wt

MOSS_COVER
    percent of log covered in moss

N
    Nitrogen concentration (micro Kjeldahl N)

N_OBS
    Number of observations used to estimate model parameters

NA
    Sodium concentration (icap inductively coupled argon spectrophotometry)

NOTES
    measurement notes and assumptions

NPE
    Non polar extractives, dichloromethane (CH2Cl2) in sonicator 90 min

OB1
    Outer bark thickness at top of logs

OB2
    Outer bark thickness at right side of log facing the end

OB3
Outer bark thickness at base of log
OB4

Outer bark thickness at left side of log facing it
OBA

Outer bark cross-sectional area
OD3

Longitudinal dimension of oven dried piece
ORIENT

Compass orientation of log from 90 degree to 270 degree
OVERALL_PV

Significance of the p-value of overall equation
P

Phosphorus concentration (icap inductively coupled argon spectrophotometry)
P1T0

Initial proportion of mass applied to k1 in dual exponential equation
P1T0_SE

Standard error of the P1t0 estimated parameter
PBA

Angle between pith and bottom
PBD

Distance between pith and log bottom
PHOTODATE

Date of photograph in mmddyy format
PIECE

Unique piece number for each section of log measured in a particular site and year. Used for primary key.
PIECENUM

Unique identifier for nutrient content analysis. T, M, B was removed from lognum_nc (now lognum) and put into this field. Used for primary key. Some data appear to be duplicates.
PITH

Block that contains the pith
POSITION

Position on log that sample was taken from
POST

Post survey reading was made form
PS1A

Angle between the pith and the first side
PS1D

Distance between the pith and the 1st side
PS2A
  Angle between the pith and 2nd side

PTA
  Angle between pith and top

PTD
  Distance from pith to top. Note all these readings are used to reference the position of the pith for future reconstructions.

R_SQUARED
  R-squared of overall equation

RADPOS
  Radial position of sample, for bark the number is zero.

RECTANGLE_TYPE
  Shape of the rectangle piece of wood cut from the sample (regular or irregular). May indicate if end piece or not.

RHA
  Rotten heartwood cross-sectional area

RSA
  Rotten sapwood cross-sectional area

S
  Sulfur concentration (icap inductively coupled argon spectrophotometry)

S_DENSITY
  Density of sapwood based on dry weight and volume

S_VOL
  Total sapwood volume

SAMPLER_SPECIES
  Species sampled; includes tree species as well as other species (such as fungi and insects)

SAMPLERDATE
  Date of sample processing

SAMPLERNUM
  Unique sample number for primary key. Based on studyid,lognum,year,time,subtype.

SAWSET
  Indicates if saw was reset during the final cutting. If blank then the saw was set once, a twice, b three times etc

SB1
  Wood piece diameter #1 starts on. A sequential number of sample position. Actual start of #1

SB2
  Wood piece diameter #2 starts on. A sequential number of sample position. Actual start of #2

SB3
  Wood piece diameter #3 starts on. A sequential number of sample position. Actual start of #3

SCIRC_LEN
Circumferential length of sapwood if present and fragmented

SDIAM
Diameter of x-sec with bark removed

SECTION
Section of log

SEGMENT
Log segment sampled, defined by the two x-sections that form ends example: (see the original sheet)

SFRAG
Is sapwood fragmented?

SHAPE
Dimensional shape of sample taken from cross-section

SITE
Bedding site of log added to

SITECODE
Sampling location

SLONG
Longitudinal length of sapwood

SLOPE
Inclination of the log

SOHWA
Total area of sound (not rotten) heartwood

SOWA
Total area of sound (not rotten) wood

SPOROCAR
Number of sporocarps on log

SRAD
Radial thickness of sapwood

STOT DRY
Total dry weight of sapwood

STOT WET
Total wet weight of sapwood

STUDYID
Study identification

SUBNUM
Unique number for each subtype in a given studyid, species, year, time. Used for primary key.

SUBTYPE
Substrate type(e.g. innerbark, heartwood)
SURFACE
    Surface area of log
SWA
    Sapwood cross-sectional area
TA
    Total cross-sectional area
TANNIN
    Tannin content based upon folin-denis method using tannic acid as a standard
TIME
    Time log has been decaying
TREATMNT
    Treatment of log exclosure, inclosure or control
VOL1
    Volume including air voids, calculated from d1,d2,d3; if missing, d2 and d3 calculated from measurement of end and center pieces
VOL2
    Volume of bark measured by water displacement
VOLUME
    Volume of log
W_RADPOS
    Radial position of wedge sample, for bark the number is zero
WA
    Cross-sectional area of wood
WBA
    Area of sample for wood borers
WBG
    Number of wood borer galleries as indicated by larval?
WEIGHT
    Weight of sample (either fresh or over dried. data from electronic digital scale.
WEIGHT_TYPE
    Is sample wet weight or oven dried weight? W=wet weight D=dry weight
WETWT
    Wet weight of sample
WSE
    Water soluble extractives, 3 hours in 100 c water, ryan et al method
WSSUG
    Percent of water soluble matter that is sugar, phenol-sulfuric acid assay
WVOL
Water displacement volume of bark. soaked 48-72 hours before measurement

YEAR

Year of measurement; does not necessarily reflect time decaying in field

ZN

Zinc concentration (icap inductively coupled argon spectrophotometry)

Enumerated Domains:
Enumerated Domain for Attribute: SITE
0 Sample from log at one of study sites (1-6), site unknown originally for knot samples taken from scraps pile at annual harvest
4 W of 350 road near junction of 350 and 1506
3 N of 410 road
5 SW of 354 road
1 End of 327 road
6 1506 road above 350 junction
2 End of 324 road
A All sites combined for summaries

Enumerated Domain for Attribute: TREATMNT
N Control - time series
J Jumbo - large diameter logs (>75 cm)
E Insect exclosure

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: EST_DIAM
Y Log diameter was estimated from a photo
N No log diameter estimation made

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: STUDYID
COW Coweeta LTER
NBS National Bureau of Standards, standard reference material
CED Cedar Creek LTER
KON Konza ILTER
MAC MacDonald forest Corvallis
HJA H.J. Andrews Experimental Forest, Oregon
WWN Wallowa Valley Ranger district, Wallowa Whitman National Forest 25 miles NE Enterprise, Oregon
ALL Material from TD23 LIDET study, see for source

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: SHAPE
1 Rectangular
4 Triangle (pie wedge)

Enumerated Domain for Attribute: SUBTYPE
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Wood standard</td>
</tr>
<tr>
<td>K</td>
<td>Knot wood</td>
</tr>
<tr>
<td>S</td>
<td>Sapwood</td>
</tr>
<tr>
<td>E</td>
<td>Heartwood near log end (terminal)</td>
</tr>
<tr>
<td>I</td>
<td>Inner bark</td>
</tr>
<tr>
<td>H</td>
<td>Heartwood</td>
</tr>
<tr>
<td>3</td>
<td>Wood standard decay class 3</td>
</tr>
<tr>
<td>5</td>
<td>Wood standard decay class 5</td>
</tr>
<tr>
<td>1</td>
<td>Pine needle nbs standard reference material # 1575</td>
</tr>
<tr>
<td>2</td>
<td>Wood standard decay class 2</td>
</tr>
<tr>
<td>M</td>
<td>Mushroom or sporocarp tissues</td>
</tr>
<tr>
<td>O</td>
<td>Outer bark</td>
</tr>
<tr>
<td>A</td>
<td>Arthropod</td>
</tr>
<tr>
<td>T</td>
<td>Transition between sapwood and heartwood</td>
</tr>
<tr>
<td>R</td>
<td>Rotten wood</td>
</tr>
<tr>
<td>L</td>
<td>Leaf sample</td>
</tr>
<tr>
<td>X</td>
<td>Whole log in which all the bark and wood tissues are combined</td>
</tr>
</tbody>
</table>

Enumerated Domain for Attribute: DBCODE

- TD014: FSDB Database code TD014

Enumerated Domain for Attribute: SECTION

- Y: 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
- Z: 2nd cross section from log remnant in 1992
- 3: Cross section from year 0, extra section
- X: 1st cross-section from log remnant
- A: 1st cross-section from large end 1st sample
- 1: Cross-section from large end of log - initial sample
- 2: Cross section from small end of log - initial sample
- B: 2nd cross-section from large end 1st sample
- D: 4th cross-section from large end 1st sample
- C: 3rd cross-section from large end 1st sample
- E: 5th cross-section from large end 1st sample
- F: 6th cross-section from large end 1st sample, usually insect enclosure logs
- G: Partial harvest samples from 1993 full harvest logs collected in 1997
- H: Partial harvest samples from 1993 full harvest logs collected in 1997
Enumerated Domain for Attribute: SUBTYPE
W  Wood standard
K  Knot wood
S  Sapwood
E  Heartwood near log end (terminal)
I  Inner bark
H  Heartwood
3  Wood standard decay class 3
5  Wood standard decay class 5
1  Pine needle nbs standard reference material # 1575
2  Wood standard decay class 2
M  Mushroom or sporocarp tissues
O  Outer bark
A  Arthropod
T  Transition between sapwood and heartwood
R  Rotten wood
L  Leaf sample
X  Whole log in which all the bark and wood tissues are combined

Enumerated Domain for Attribute: WEIGHT_TYPE
D  Dry weight
W  Wet weight

Enumerated Domain for Attribute: DBCODE
TD014  FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y  2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z  2nd cross section from log remnant in 1992
3  Cross section from year 0, extra section
X  1st cross-section from log remnant
A  1st cross-section from large end 1st sample
1  Cross-section from large end of log - initial sample
2  Cross section from small end of log - initial sample
B  2nd cross-section from large end 1st sample
D  4th cross-section from large end 1st sample
C  3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: SHAPE
1 Rectangular
4 Triangle (pie wedge)

Enumerated Domain for Attribute: SUBTYPE
W Wood standard
K Knot wood
S Sapwood
E Heartwood near log end (terminal)
I Inner bark
H Heartwood
3 Wood standard decay class 3
5 Wood standard decay class 5
1 Pine needle nbs standard reference material # 1575
2 Wood standard decay class 2
M Mushroom or sporocarp tissues
O Outer bark
A Arthropod
T Transition between sapwood and heartwood
R Rotten wood
L Leaf sample
X Whole log in which all the bark and wood tissues are combined

Enumerated Domain for Attribute: DBCODE
TD014 FSD Database code TD014

Enumerated Domain for Attribute: SAWSET
1 saw was set once
2 saw was set twice
3 saw was set three times

Enumerated Domain for Attribute: RECTANGLE_TYPE
R Regular rectangular shaped piece
I Irregular rectangular shaped piece
Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014
Enumerated Domain for Attribute: STUDYID
COW Coweeta LTER
NBS National Bureau of Standards, standard reference material
CED Cedar Creek LTER
KON Konza LTER
MAC MacDonald forest Corvallis
HJA H.J. Andrews Experimental Forest, Oregon
WWN Wallowa Valley Ranger district, Wallowa Whitman National Forest 25 miles NE Enterprise, Oregon
ALL Material from TD23 LIDET study, see for source

Enumerated Domain for Attribute: SUBTYPE
W Wood standard
K Knot wood
S Sapwood
E Heartwood near log end (terminal)
I Inner bark
H Heartwood
3 Wood standard decay class 3
5 Wood standard decay class 5
1 Pine needle nbs standard reference material # 1575
2 Wood standard decay class 2
M Mushroom or sporocarp tissues
O Outer bark
A Arthropod
T Transition between sapwood and heartwood
R Rotten wood
L Leaf sample
X Whole log in which all the bark and wood tissues are combined

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1st cross-section from large end 1st sample</td>
</tr>
<tr>
<td>1</td>
<td>Cross-section from large end of log - initial sample</td>
</tr>
<tr>
<td>2</td>
<td>Cross section from small end of log - initial sample</td>
</tr>
<tr>
<td>B</td>
<td>2nd cross-section from large end 1st sample</td>
</tr>
<tr>
<td>D</td>
<td>4th cross-section from large end 1st sample</td>
</tr>
<tr>
<td>C</td>
<td>3rd cross-section from large end 1st sample</td>
</tr>
<tr>
<td>E</td>
<td>5th cross-section from large end 1st sample</td>
</tr>
<tr>
<td>F</td>
<td>6th cross-section from large end 1st sample, usually insect enclosure logs</td>
</tr>
<tr>
<td>G</td>
<td>Partial harvest samples from 1993 full harvest logs collected in 1997</td>
</tr>
<tr>
<td>H</td>
<td>Partial harvest samples from 1993 full harvest logs collected in 1997</td>
</tr>
</tbody>
</table>

**Enumerated Domain for Attribute: DBCODE**

TD014 FSDB Database code TD014

**Enumerated Domain for Attribute: POSITION**

B Bottom  
S Side  
T Top

**Enumerated Domain for Attribute: TREATMNT**

N Control - time series  
J Jumbo - large diameter logs (>75 cm)  
E Insect exclosure

**Enumerated Domain for Attribute: DBCODE**

TD014 FSDB Database code TD014

**Enumerated Domain for Attribute: LAB**

MMI Micro macro international inc. analytical lab Athens, Georgia  
CAL OSU Central analytical laboratory Corvallis, Oregon  
HOR OSU Central analytical laboratory Corvallis, Oregon

**Enumerated Domain for Attribute: STUDYID**

COW Coweeta LTER  
NBS National Bureau of Standards, standard reference material  
CED Cedar Creek LTER  
KON Konza ILTER  
MAC MacDonald forest Corvallis  
HJA H.J. Andrews Experimental Forest, Oregon  
WWN Wallowa Valley Ranger district, Wallowa Whitman National Forest 25 miles NE Enterprise, Oregon  
ALL Material from TD23 LIDET study, see for source
Enumerated Domain for Attribute: SUBTYPE
W  Wood standard
K  Knot wood
S  Sapwood
E  Heartwood near log end (terminal)
I  Inner bark
H  Heartwood
3  Wood standard decay class 3
5  Wood standard decay class 5
1  Pine needle nbs standard reference material # 1575
2  Wood standard decay class 2
M  Mushroom or sporocarp tissues
O  Outer bark
A  Arthropod
T  Transition between sapwood and heartwood
R  Rotten wood
L  Leaf sample
X  Whole log in which all the bark and wood tissues are combined

Enumerated Domain for Attribute: DBCODE
TD014  FSDB Database code TD014

Enumerated Domain for Attribute: PIECENUM
B  Bottom
M  Middle
T  Top
1  Piece #1
2  Piece #2
3  Piece #3
4  Piece #4
5  Piece #5
6  Piece #6
7  Piece #7
8  Piece #8
9  Piece #9

Enumerated Domain for Attribute: SAMPLED_SPECIES
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXSP</td>
<td>Oxyporus species</td>
</tr>
<tr>
<td>NACA</td>
<td>Naematoloma capnoides</td>
</tr>
<tr>
<td>MYOC</td>
<td>Mycena occidentalis</td>
</tr>
<tr>
<td>POVE</td>
<td>Polyporus versicolor</td>
</tr>
<tr>
<td>HEAB</td>
<td>Hericium abietes</td>
</tr>
<tr>
<td>PHTR</td>
<td>Phlebia tremellosus</td>
</tr>
<tr>
<td>AMSP</td>
<td>Ampedus spp., mixed species small brown elaterid beetles</td>
</tr>
<tr>
<td>BMIX</td>
<td>Buprestis rusticorum and dicerca tenebrosa, mixed buprestid beetles</td>
</tr>
<tr>
<td>ALME</td>
<td>Alaus melanops, large eye-spotted elaterid beetle</td>
</tr>
<tr>
<td>THUN</td>
<td>Thanasmus undatulus, checkered beetle</td>
</tr>
<tr>
<td>DEPS</td>
<td>Dendroctonus pseudotsugae, d.f. bark beetle</td>
</tr>
<tr>
<td>FOPI</td>
<td>Fomitopsis pinicola</td>
</tr>
<tr>
<td>CHAN</td>
<td>Chalophora angulicollis, sculptured pine borer, buprestid beetle</td>
</tr>
<tr>
<td>BUAU</td>
<td>Buprestis aurulenta, golden buprestid beetle</td>
</tr>
<tr>
<td>WSTD</td>
<td>Psme hw wood standard</td>
</tr>
<tr>
<td>WST?</td>
<td>Wood standard with questionable values</td>
</tr>
<tr>
<td>RHIN</td>
<td>Rhagium inquistor, grey cerambycid beetle</td>
</tr>
<tr>
<td>PSM?</td>
<td>Suspect unknown sample, possibly psme</td>
</tr>
<tr>
<td>PSTD</td>
<td>Pire pine needle standard</td>
</tr>
<tr>
<td>NEMI</td>
<td>Neanthophilax mirificus, red and black cerambycid beetle</td>
</tr>
<tr>
<td>CTSP</td>
<td>Ctenicera spp., mixed species small striped elaterid beetles</td>
</tr>
<tr>
<td>THPL</td>
<td>Thuja plicata</td>
</tr>
<tr>
<td>ABAM</td>
<td>Abies amabilis</td>
</tr>
<tr>
<td>PSME</td>
<td>Pseudotsuga menziesii</td>
</tr>
<tr>
<td>TSHE</td>
<td>Tsuga heterophylla</td>
</tr>
<tr>
<td>QRC</td>
<td>Quercus species</td>
</tr>
<tr>
<td>ACSA</td>
<td>Acer saccharum</td>
</tr>
</tbody>
</table>

Enumerated Domain for Attribute: SUBTYPE
- **W**: Wood standard
- **K**: Knot wood
- **S**: Sapwood
- **E**: Heartwood near log end (terminal)
- **I**: Inner bark
- **H**: Heartwood
Wood standard decay class 3
Wood standard decay class 5
Pine needle nbs standard reference material # 1575
Wood standard decay class 2
Mushroom or sporocarp tissues
Outer bark
Arthropod
Transition between sapwood and heartwood
Rotten wood
Leaf sample
Whole log in which all the bark and wood tissues are combined

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SITE
0 Sample from log at one of study sites (1-6), site unknown originally for knot samples taken from scraps pile at annual harvest
4 W of 350 road near junction of 350 and 1506
3 N of 410 road
5 SW of 354 road
1 End of 327 road
6 1506 road above 350 junction
2 End of 324 road
A All sites combined for summaries

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: POST
A Survey Post A
B Survey Post B
C Survey Post C
D Survey Post D
E Survey Post E
F Survey Post F
G Survey Post G
H Survey Post H
I Survey Post I
J Survey Post J
K Survey Post K
L Survey Post L
M Survey Post M

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: SUBTYPE
W Wood standard
K Knot wood
S Sapwood
E Heartwood near log end (terminal)
I Inner bark
H Heartwood
3 Wood standard decay class 3
5 Wood standard decay class 5
1 Pine needle nbs standard reference material # 1575
2 Wood standard decay class 2
M Mushroom or sporocarp tissues
O Outer bark
A Arthropod
T Transition between sapwood and heartwood
R Rotten wood
L Leaf sample
X Whole log in which all the bark and wood tissues are combined

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: BFRAG
Y bark is fragmented
N bark is not fragmented

Enumerated Domain for Attribute: SFRAG
Y sapwood is fragmented
N sapwood is not fragmented

Enumerated Domain for Attribute: HFRAG
Y heartwood is fragmented
N heartwood is not fragmented

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: SHAPE
1 Rectangular
4 Triangle (pie wedge)

Enumerated Domain for Attribute: SUBTYPE
W Wood standard
K Knot wood
S Sapwood
E Heartwood near log end (terminal)
I Inner bark
H Heartwood
3 Wood standard decay class 3
5 Wood standard decay class 5
1 Pine needle nbs standard reference material # 1575
2 Wood standard decay class 2
M Mushroom or sporocarp tissues
O Outer bark
A Arthropod
T Transition between sapwood and heartwood
R Rotten wood
L Leaf sample
X Whole log in which all the bark and wood tissues are combined
Enumerated Domain for Attribute: \texttt{DBCODE}

- \texttt{TD014} FSDB Database code \texttt{TD014}

Enumerated Domain for Attribute: \texttt{W\_RADPOS}

- 1 top, sapwood
- 2 top, heartwood
- 3 bottom, heartwood
- 4 bottom, sapwood
- 5 left, sapwood
- 6 left, heartwood
- 7 right, heartwood
- 8 right, sapwood
- 0 bark

Enumerated Domain for Attribute: \texttt{SECTION}

- Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
- Z 2nd cross-section from log remnant in 1992
- 3 Cross section from year 0, extra section
- X 1st cross-section from log remnant
- A 1st cross-section from large end 1st sample
- 1 Cross-section from large end of log - initial sample
- 2 Cross section from small end of log - initial sample
- B 2nd cross-section from large end 1st sample
- D 4th cross-section from large end 1st sample
- C 3rd cross-section from large end 1st sample
- E 5th cross-section from large end 1st sample
- F 6th cross-section from large end 1st sample, usually insect enclosure logs
- G Partial harvest samples from 1993 full harvest logs collected in 1997
- H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: \texttt{DBCODE}

- \texttt{TD014} FSDB Database code \texttt{TD014}

Enumerated Domain for Attribute: \texttt{SECTION}

- Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
- Z 2nd cross-section from log remnant in 1992
- 3 Cross section from year 0, extra section
- X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SECTION
Y 2nd cross-section from log remnant 1st cross-section from log remnant in 1992
Z 2nd cross section from log remnant in 1992
3 Cross section from year 0, extra section
X 1st cross-section from log remnant
A 1st cross-section from large end 1st sample
1 Cross-section from large end of log - initial sample
2 Cross section from small end of log - initial sample
B 2nd cross-section from large end 1st sample
D 4th cross-section from large end 1st sample
C 3rd cross-section from large end 1st sample
E 5th cross-section from large end 1st sample
F 6th cross-section from large end 1st sample, usually insect enclosure logs
G Partial harvest samples from 1993 full harvest logs collected in 1997
H Partial harvest samples from 1993 full harvest logs collected in 1997

Enumerated Domain for Attribute: DBCODE
TD014 FSDB Database code TD014

Enumerated Domain for Attribute: SITE
0 Sample from log at one of study sites (1-6), site unknown originally for knot samples taken from scraps pile at annual harvest
4 W of 350 road near junction of 350 and 1506
3 N of 410 road
5 SW of 354 road
1  End of 327 road
6  1506 road above 350 junction
2  End of 324 road
A  All sites combined for summaries

**Enumerated Domain for Attribute: SUBTYPE**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Wood standard</td>
</tr>
<tr>
<td>K</td>
<td>Knot wood</td>
</tr>
<tr>
<td>S</td>
<td>Sapwood</td>
</tr>
<tr>
<td>E</td>
<td>Heartwood near log end (terminal)</td>
</tr>
<tr>
<td>I</td>
<td>Inner bark</td>
</tr>
<tr>
<td>H</td>
<td>Heartwood</td>
</tr>
<tr>
<td>3</td>
<td>Wood standard decay class 3</td>
</tr>
<tr>
<td>5</td>
<td>Wood standard decay class 5</td>
</tr>
<tr>
<td>1</td>
<td>Pine needle nbs standard reference material # 1575</td>
</tr>
<tr>
<td>2</td>
<td>Wood standard decay class 2</td>
</tr>
<tr>
<td>M</td>
<td>Mushroom or sporocarp tissues</td>
</tr>
<tr>
<td>O</td>
<td>Outer bark</td>
</tr>
<tr>
<td>A</td>
<td>Arthropod</td>
</tr>
<tr>
<td>T</td>
<td>Transition between sapwood and heartwood</td>
</tr>
<tr>
<td>R</td>
<td>Rotten wood</td>
</tr>
<tr>
<td>L</td>
<td>Leaf sample</td>
</tr>
<tr>
<td>X</td>
<td>Whole log in which all the bark and wood tissues are combined</td>
</tr>
</tbody>
</table>

**Enumerated Domain for Attribute: DBCODE**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD014</td>
<td>FSDB Database code TD014</td>
</tr>
</tbody>
</table>

**Enumerated Domain for Attribute: EQN_FORM**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAG</td>
<td>Modified Chapman-Richards to include lag term: $PMR= 1-(1-exp(-k*t))^Lag$ where $PMR$ is proportion of mass remaining, $t$ is time in years, and $k$ and $Lag$ are the model parameters</td>
</tr>
<tr>
<td>SINGLE</td>
<td>Single negative exponential: $PMR=Int<em>exp(-k</em>t)$ where $PMR$ is proportion of mass remaining, $t$ is time in years, and $k$ is the model parameter</td>
</tr>
<tr>
<td>DUAL</td>
<td>Dual negative exponential: $PMR= P1to<em>exp(-k1</em>t) + (1-P1to)<em>exp(-k2</em>t)$ where $PMR$ is proportion of mass remaining, $P1to$ is the proportion of part 1 at time zero, $t$ is time in years, and $k1$ and $k2$ are the decomposition ra</td>
</tr>
</tbody>
</table>

**Enumerated Domain for Attribute: INTERCEPT_FORCED**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Yes, intercept forced</td>
</tr>
<tr>
<td>N</td>
<td>No, intercept not forced</td>
</tr>
</tbody>
</table>

**Enumerated Domain for Attribute: OVERALL_PV**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>P-value not significant (&gt; 0.1)</td>
</tr>
<tr>
<td>M</td>
<td>P-value moderately significant (0.05-0.1)</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>S</td>
<td>P-value significant (&lt;0.05)</td>
</tr>
<tr>
<td>H</td>
<td>P-value highly significant (&lt;0.01)</td>
</tr>
</tbody>
</table>